Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 0

Abgabe: 9.11.2020, 10 Uhr

Gruppennummer angeben!

Lesen Sie im Skript Appendix A sowie B und versuchen Sie sich an den folgenden Aufgaben. Dieses Blatt wird nicht benotet, die Abgabe muss aber im ILIAS (als eine einzige PDF-Datei) eingereicht werden, um sich mit ILIAS vertraut zu machen.

Aufgabe 1. Zeige mit Hilfe des Induktionsprinzips, dass

$$n! > 2^n$$

für alle natürlichen Zahlen $n \ge 4$, wobei $n! = n(n-1) \cdots 2 \cdot 1$.

Aufgabe 2. Finde und beweise induktiv eine Formel für

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} \quad \text{für } n > 0.$$

Aufgabe 3.

Betrachte folgende Abbildung

Zeige induktiv, dass $f(n) \leq 2^{2^n}$.

Hinweis: Warum gibt es unendlich viele Primzahlen? Was ist $\sum_{k=0}^{n} 2^{k}$?

Aufgabe 4.

Wir betrachten die sogennante perforierte Ebene $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Die Kollektion aller Geraden, welche durch (den "fehlenden" Punkt) (0,0) gehen, zerlegt die Menge X (siehe Bemerkung nach der Definition B.4 im Skript). Sei E die von dieser Zerlegung induzierte Äquivalenzrelation auf X und $[(a,b)]_E$ die Äquivalenzklasse des Punktes (a,b) in X.

- (a) Sind die Äquivalenzklassen $[(0,1)]_E$ und $[(1,0)]_E$ disjunkt?
- (b) Bildet der Einheitskreis $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ ein Repräsentantensystem für E?
- (c) Zeige, dass die Abbildung

$$g: \quad X \quad \to \qquad \mathbb{R}$$

$$(x,y) \quad \mapsto \quad \begin{cases} x/y, \text{ falls } y \neq 0 \\ \pi, \text{ sonst.} \end{cases}$$

kompatibel mit E ist. Ist die induzierte Abbildung $\overline{g}: X/E \to \mathbb{R}$ injektiv? Und surjektiv? (Siehe Beispiel 1.23 im Skript für die Definition.)

ABGABE IN ILIAS ALS EINE EINZIGE PDF-DATEI EINREICHEN.